Compact Riemannian 7-manifolds with holonomy $G\sb 2$. II
نویسندگان
چکیده
منابع مشابه
Superconformal Field Theories for Compact Manifolds with Spin(7) Holonomy
We present a construction of superconformal field theories for manifolds with Spin(7) holonomy. Geometrically these models correspond to the realization of Spin(7) manifolds as anti-holomorphic quotients of Calabi-Yau fourfolds. Describing the fourfolds as Gepner models and requiring anomaly cancellation we determine the resulting Betti numbers of the Spin(7) superconformal field theory. As in ...
متن کاملFinsler manifolds with non-Riemannian holonomy
The aim of this paper is to show that holonomy properties of Finsler manifolds can be very different from those of Riemannian manifolds. We prove that the holonomy group of a positive definite non-Riemannian Finsler manifold of non-zero constant curvature with dimension > 2 cannot be a compact Lie group. Hence this holonomy group does not occur as the holonomy group of any Riemannian manifold. ...
متن کاملPrimitive Compact Flat Manifolds with Holonomy Group
From an important construction of Calabi (see [Ca], [Wo]), it follows that the compact Riemannian flat manifolds with first Betti number zero are the building blocks for all compact Riemannian flat manifolds. It is, therefore, of interest to construct families of such objects. These are often called primitive manifolds. Hantzsche and Wendt (1935) constructed the only existing 3-dimensional comp...
متن کاملIntersecting branes and 7 - manifolds with G 2 holonomy
In this talk I discuss intersecting brane configurations coming from explicit metrics with G2 holonomy. An example of a 7-manifold which representing a R 3 bundle over a self-dual Einstein space is described and the potential appearing after compactification over the 6-d twistor space is derived.
متن کاملCompact Riemannian Manifolds with Positive Curvature Operators
M is said to have positive curvature operators if the eigenvalues of Z are positive at each point p € M. Meyer used the theory of harmonic forms to prove that a compact oriented n-dimensional Riemannian manifold with positive curvature operators must have the real homology of an n-dimensional sphere [GM, Proposition 2.9]. Using the theory of minimal two-spheres, we will outline a proof of the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1996
ISSN: 0022-040X
DOI: 10.4310/jdg/1214458110